摘要
针对特征子集区分度准则DFS(Discernibility of feature subsets)没有考虑特征测量量纲对特征子集区分能力影响的缺陷,引入离散系数,提出GDFS(Generalized discernibility of feature subsets)特征子集区分度准则.结合顺序前向、顺序后向、顺序前向浮动和顺序后向浮动4种搜索策略,以极限学习机为分类器,得到4种混合特征选择算法. UCI数据集与基因数据集的实验测试,以及与DFS、Relief、DRJMIM、m RMR、LLE Score、AVC、SVM-RFE、VMInaive、AMID、AMID-DWSFS、CFR和FSSC-SD的实验比较和统计重要度检测表明:提出的GDFS优于DFS,能选择到分类能力更好的特征子集.
-
单位陕西师范大学; 生命科学学院