摘要

针对目前国内联合收割机缺乏含杂率在线检测的问题,提出一种基于改进Mask R-CNN的水稻茎秆杂质分割方法。依据茎秆杂质形状位置特征,对原始Mask R-CNN中网络层进行优化;引入图像增广技术对图像样本进行扩充,解决图像训练数据匮乏问题;利用训练后模型对验证集中图像进行分割,并与原始Mask R-CNN等算法进行对比。结果表明,改进后Mask R-CNN算法的综合评价指标F1达到91.12%,优于其他模型,且分割时间可达到3.57 s,证明其可满足实时检测要求,为后续含杂率在线检测系统实现提供技术参考。

全文