摘要

采用光谱技术对水果进行定量或定性分析,如何获得一个简单、有效的校正模型对后续模型的应用和维护都非常关键。以草莓内部品质近红外光谱预测为例,从关键变量和特征样本优选两方面进行研究。采用竞争性自适应重加权CARS算法对光谱变量进行初次选择,随后采用连续投影算法SPA对校正集样本进行优选,获得98个特征样本,针对优选后的变量/样本子集利用SPA算法作二次关键变量提取,获得25个关键变量。为了验证CARS算法的性能,蒙特卡罗无信息变量消除MC-UVE和连续投影算法SPA用于比较研究。CARS算法在消除无信息变量的同时可以对共线性信息进行去除。同样,为了评估SPA算法在特征样本选择中的性能,经典的Kennard-Stone算法也用于比较分析。SPA算法能够用于校正集特征样本的优选。针对最终优选后的变量/样本(25/98)子集建立PLS和MLR模型对草莓内部可溶性固形物含量SSC含量进行定量预测。结果表明,两个模型利用原始变量/样本的0.59%/65.33%的信息均能够获得比基于原始变量/样本所建模型更好的性能,且MLR模型比PLS模型性能略优,r2pre,RMSEP和RPD分别为0.909 7,0.348 4和3.327 8。