摘要

皮肤镜图像中的皮肤病变自动识别是提高诊断性能和减少皮肤癌死亡的重要方法.针对训练数据不足的问题,提出一种基于pix2pixHD的高分辨率皮肤镜图像合成方法.首先,通过皮肤病灶的真实边界,结合病变类别对皮肤病变知识进行建模,获取包含病理意义的标签映射;其次,以标签映射作为病变合成的约束条件,利用构建的生成对抗网络模型实现标签映射向皮肤镜图像的空间映射,同时将生成器的浅层和深层特征相结合以避免图像细节信息的丢失;然后,引入标准差特征匹配损失以稳定生成对抗网络的训练.在ISIC-2017数据集上的实验结果表明,相比不同合成方法生成图像的质量,该方法具有更好的视觉效果以及IS与FID定量化指标评价,并且可为监督学习网络提供额外的信息增益,以提高皮肤病变分类的准确度.