摘要
准确、可靠的城市轨道交通短时客流预测是智慧地铁的重要组成部分。现有的短时客流预测模型大多是在常态条件下提出的,在异常条件下难以获得满意的预测精度。为此,提出一种基于深度集成神经网络(deep ensemble neural network, DENN)的短时进站客流预测模型。该模型建模并整合了天气、时间和特殊事件等外部环境因素,最近时段进站客流的时间依赖性,以及出站客流的相关性,具有高度的灵活性和可扩展性。具体地,在DENN中,首先,嵌入一个门控循环单元(gated recurrent unit, GRU)网络,用于提取最近时段进站客流数据的时间依赖性;其次,引入Transformer网络,用于自适应地捕获出站客流数据中对进站客流影响最大的时段,以提取出站客流的相关性;最后,应用全连接网络编码外部环境因素和实现特征融合及预测。在上海地铁徐泾东站和上海体育场站的数值实验表明,提出方法在普遍条件下都能取得较高的预测精度。
-
单位中国铁道科学研究院; 西南交通大学