摘要

针对传统的全变分(TV)模型因参数选择敏感,导致去噪图像容易在平滑区域产生"阶梯效应"或者虚假边缘的情况,提出一种基于非线性扩散方程的改进全变分去噪算法。在传统的TV算法基础上,提出了一种针对参数的自适应迭代函数,结合P-M算法的非线性扩散方程,使本算法在迭代初期可以看作各向同性去噪模型,有效去除"阶梯效应",随着迭代次数的增加,此模型为各向异性去噪模型,在去除噪声的同时,有效保护图像的边缘细节。实验结果表明,去噪过程中,该算法在扩散系数和自适应迭代函数的共同作用下,消除了阶梯效应和虚假边缘,相比传统TV算法提升了图像3 dB的峰值信噪比(PSRN)和视觉效果。基本满足图像预处理要求。