摘要
PM2.5要素对空气质量影响较大。PM2.5浓度变化是多种因素作用的结果,且过程突发、非线性,具有明显的不确定性,难以使用传统的方法进行预测。针对该问题,以气象、大气污染物因素作为PM2.5预测指标,提出基于LSTM循环神经网络的PM2.5预测模型。使用灰色关联度分析方法对多个气象、大气污染指标进行关联强度分析;对数据进行平滑处理,将时间序列问题处理为监督问题;搭建多变量的LSTM循环神经网络PM2.5预测模型,实现PM2.5日值浓度的准确预测。使用北京市2010年-2017年气象数据和大气污染物数据进行仿真实验,结果表明该模型能够较好地预测PM2.5的日值变化趋势。
- 单位