摘要

归一化差值积雪指数NDSI (Normalized Difference Snow Index)是积雪识别中最常用的指数,但由于云的遮挡限制了MODIS NDSI产品的应用。本文提出了一种基于邻近相似像元的MODIS NDSI产品去云方法,并分析了无云NDSI序列在积雪识别中的最优阈值。对于NDSI影像上某一个云遮挡的目标像元,选取目标像元的n个邻近相似像元进行加权平均来预测该目标像元的NDSI值。以东北积雪区2017年10月1日—2018年4月31日一个积雪季的NDSI产品进行去云实验,并采用“云假设”的方法进行了检验,所预测到的云覆盖像元NDSI值与实际值的相关系数达到0.95,均方根误差为0.08。将逐日无云NDSI序列与气象站点测量的雪深序列进行对比,二者具有很好的一致性。气象站点的测量雪深大于等于1 cm时,假定该站点所在的像元为有雪像元,并以此为真值,分析无云NDSI序列在积雪识别中的最优阈值。结果表明,非森林地区NDSI阈值为0.1时积雪提取的精度最高,可以达到95.6%;森林地区的NDSI最优阈值为0,对应的积雪提取精度为93.5%。