基于超像素和支持向量机的阴道细菌自动检测

作者:宋有义; 雷柏英; 何亮; 曾忠铭; 周煜翔; 倪东; 陈思平; 汪天富
来源:中国生物医学工程学报, 2015, 34(02): 204-211.
DOI:10.3969/j.issn.0258-8021.2015.02.011

摘要

阴道受到细菌感染引发的阴道炎疾病可能导致异位妊娠、不孕、急慢性盆腔炎等严重疾病,目前形态学人工观察是临床诊断该类疾病的主要方法,但容易引起误诊和漏诊。本研究提出一种基于超像素和支持向量机(SVM)的阴道细菌自动检测方法,对革兰染色的阴道细菌图像,采用简单线性迭代聚类(SLIC)方法计算超像素;对超像素区域计算形状特征、颜色特征和方向梯度直方图(HOG)特征;最后用SVM对超像素区域进行识别。在专业医生的指导下挑选了40幅正常图像和60幅有细菌性阴道病(BV)的图像进行实验,其中10幅正常图像和20幅有细菌性阴道病(BV)的图像用于训练分类器,剩下的70幅用于测试算法。实验结果表明,所提出的自动检测算法获得了89.27%的细菌检出率,具有较大的临床应用价值。

全文