摘要

为进一步提高脑肿瘤影像诊断的准确性和稳健性,提出一种基于CBAM(Convolutional Block Attention Module)和改进通道注意力机制的EfficientNet神经网络(IC+IEffxNet)的新型混合脑肿瘤分类方法。该方法分为2个阶段,第一阶段由基于改进空间注意力机制的CBAM模型提取特征。第二阶段将EfficientNet架构中的Squeeze and Excitation(SE)块替换成Efficient Channel Attention (ECA)块,将第一阶段的组合特征输出作为第二阶段的输入。实验展示了在混合脑肿瘤MRI数据集下,神经胶质瘤患者、脑膜瘤患者、脑垂体瘤患者与正常患者图像的4分类结果,实验结果显示分类平均准确率比现有方法提高约0.5~2个百分点。实验结果证明了该方法的有效性,为医疗专家能够准确判断脑肿瘤种类提供了新的参考。