摘要
本文研究的图像语义分割是计算机视觉研究的重要部分,为提高场景图像语义分割的准确率,且考虑到基于全卷积神经网络的双重语义分割模型(Dual-Attention)存在边缘分割不均匀、正负样本不平衡的问题。本文采用边缘模块,增强边缘分割能力并且优化图像的边缘细节;采用一种基于样本距离的损失函数,来调节正负样本。在场景cityscapes数据集上进行了实验与验证,结果表明改进之后的模型单尺度平均交并比(MIoU)相比原算法相对提高2.96%。它能够更加精细地分割目标,较好地解决分割边界不精细,有效地抑制边界区域分割的不均匀问题。
- 单位