摘要

为减少交通事故,保障道路交通安全,提出一种能更加有效地检测驾驶人驾驶状态的方法。通过对疲劳状态进行等级划分,利用脉搏波信号(Photoplethysmographic signal, PPG)以及皮肤电反应信号(Galvanic Skin Response, GSR),实现多种生理信号融合,进而构建驾驶人的驾驶疲劳状态数据库。根据采集数据结合主观评测分析驾驶人状态变化规律,选取有效指标进行分析比较,以探究各个指标与疲劳程度的变化趋势。依据状态变化规律和特征,结合主观评测,分析驾驶人的疲劳状态。同时,设定疲劳状态等级,分为清醒、轻度疲劳和重度疲劳状态,构建隐马尔可夫(Hidden Markov Model, HMM)驾驶疲劳水平分级的疲劳评估模型。测试结果显示:训练后的HMM疲劳检测模型准确率为90%。