摘要
目前机器人煤矸识别方法准确率较低,速度较慢,以及对硬件要求较高等问题都限制了其实用化发展。鉴于深度卷积神经网络在图像识别上取得的优异效果,提出用于智能煤矸分选机器人的改进型VGG网络煤矸识别模型。扩大VGG16网络感受野并引入残差结构以提升模型网络性能,增加噪声和数据增强提升模型泛化能力。实验结果表明,改进型VGG网络煤矸识别模型的识别准确率提升了2.01%,召回率提升了2.58%,减小了所需内存,解决了VGG16网络效率低的弊病。同时模型的各项性能指标明显高于其他经典网络模型,更加满足煤矸分选机器人的各项实用化需求。
- 单位