摘要

行人轨迹预测对智慧城市建设、公共危机管理具有重要意义.复杂场景中的行人轨迹不仅包含行人个体运动时序性特征,还包含行人与周围其他运动实体之间的交互性特征.如何根据场景变化,对这种时序性和交互性特征进行深度刻画并进行轨迹预测,是复杂场景行人轨迹预测的关键问题.本文采用多头注意力机制和对抗生成方法,提出一种基于多头注意力机制的生成对抗网络模型(Multi-head Attention Generative Adversarial Model,MAGAM),对复杂场景下多行人轨迹进行建模.论文首先通过多头注意力机制融合行人的相对位移信息,从不同方面学习轨迹特征空间中各子空间特征的权重信息,实现对行人之间相互影响的交互性轨迹特征刻画;然后采用对抗生成机制和多轨迹生成策略,实现对复杂场景下不同个体移动轨迹的生成与预测.最后,本文在两个公开的数据集(ETH和UCY)进行了实验验证.实验结果表明,在ADE、FDE和AnlDE三个指标上,本文提出的MAGAM模型比基准模型误差平均降低了26.90%、21.02%和24.06%.本文对模型的预测结果进行可视化分析,直观展示了本论文模型的合理性.