摘要
为有效解决复杂行驶工况下无法准确预测重型车辆侧翻的难题,设计了基于机器学习方法的自适应提升(AdaBoost)算法,实现了复杂行驶工况下重型车辆非绊倒型侧翻判据的实时准确计算。首先建立了基于重型车辆仿真模型与侧翻预警模型;其次,利用AdaBoost学习算法理论,设计了基于单层决策方法构建多个弱分类器的架构并对其进行了模拟训练与加权求和;最后,结合商业软件TruckSim(?)动力学软件,对比分析了双移线(DLC)与鱼钩(Fishhook)工况下重型车辆侧翻预警失效的侧翻效果。仿真结果表明:所设计的基于AdaBoost算法侧翻预警判据可在复杂行驶工况下有效预测重型车辆侧翻,且对应的测试集正确率比Logistic回归算法预测精度改善24.9%,且模型评估预测 ROC(receiver operation characteristic)曲线面积为 0.958。
-
单位中国汽车技术研究中心有限公司; 中汽研(天津)汽车工程研究院有限公司; 河北工程大学