摘要
通过将时序卷积网络(TCN)与Transformer解码器进行组合,提出一种基于Transformer的滑坡短期位移预测模型。将预处理过的位移与降雨序列作为模型的输入,以时序自回归方式输出未来3日的位移预测结果。实验结果表明,与支持向量机(SVM)和长短期记忆(LSTM)等传统模型相比,该模型精度较高,在快速变形期的预测优势尤为突出。对模型注意力机制的分析结果表明,模型关注的重点在位移峰值和大降雨附近,具有较高的可信度。
-
单位中国地质环境监测院; 北京大学