摘要

初始中心点的选择对于传统的K-means算法聚类结果影响较大,容易使聚类陷入局部最优解。针对这个问题,引入密度和最近邻思想,提出了生成初始聚类中心的算法Initial。将所选聚类中心用于K-means算法,得到了更好的应用于文本聚类的DN-K-means算法。实验结果表明,该算法可以生成聚类质量较高并且稳定性较好的结果。