摘要

针对一类具有不确定性的连续时间非线性系统,提出一种基于单网络评判学习的鲁棒跟踪控制方法.首先建立由跟踪误差与参考轨迹构成的增广系统,将鲁棒跟踪控制问题转换为镇定设计问题.通过采用带有折扣因子和特殊效用项的代价函数,将鲁棒镇定问题转换为最优控制问题.然后,通过构建评判神经网络对最优代价函数进行估计,进而得到最优跟踪控制算法.为了放松该算法的初始容许控制条件,在评判神经网络权值更新律中增加一个额外项.利用Lyapunov方法证明闭环系统的稳定性及鲁棒跟踪性能.最后,通过仿真结果验证该方法的有效性和适用性.

全文