摘要
深度学习在处理时间序列数据上具有优势,在汇率时间序列的应用研究中,目前深度学习主要关注于单步预测,即利用以前时点的数据预测下一个时点的汇率数据。然而,在实际应用中,这种单步预测方式往往无法为决策者提供足够的决策信息;同时,由于汇率时间序列呈现出非平稳、复杂度高等特点,直接利用传统深度学习方法进行预测无法充分挖掘汇率序列的特征及规律。为此,本研究提出一种基于多尺度一维卷积神经网络(1D-CNN)和注意力机制的汇率多步预测方法,该方法在自适应的融合多尺度特征的同时,差异化的融合汇率不同时刻的时间序列特征,实现汇率的多步预测。通过实验发现,所提方法相较于基准方法,如差分整合移动平均自回归模型、支持向量回归、随机游走、极限梯度提升算法、长短期记忆网络等具有更高的预测精度,表明该方法能够为外汇市场投资者提供决策支持。
- 单位