摘要

针对提高Wi-Fi指纹室内定位技术性能,该文首先提出一种基于卷积神经网络(CNN)的信道状态信息(CSI)指纹室内定位方法。该方法在离线阶段联合CSI幅度差和相位差信息对CNN模型进行训练。在廊厅和实验室两种不同室内定位场景进行了定位实验,分别获得了25 cm和48 cm的平均定位误差;然后,在此基础上重点针对提高基于CNN的CSI室内定位时效性,引入卷积自编码器(CAE)实现CSI的降维处理,在保证原始定位方法精度的前提下,定位时间提高了40%,同时将内存消耗降低到原算法的1/15,实验结果验证了所提算法的有效性。