摘要

文章以互联网金融机构客户信贷数据为基础,使用7种不同的数据挖掘方法建立个人信用评估模型,从预测准确率、模型外推性、第二类错误率、预期错误分类成本4个方面评价模型的综合信用评估能力。评价结果表明,使用分类树和K近邻分类算法建立的个人信用评估模型的综合信用评估能力最高;同时发现使用线性和非线性方法建立的模型各有特点,线性分类模型能够对违约客户进行有效识别,而非线性分类模型的预测精度较高。