摘要

深度图被广泛应用于三维重建等领域,然而,由深度相机捕获的深度图会产生各种类型的失真,这使得从深度图中准确估计深度信息变得困难。针对低质量深度图中存在的各种类型的噪声,提出一种基于生成对抗网络的深度图像去噪算法。生成对抗网络由生成网络和判别网络组成。在生成网络中引入残差网络,避免模型退化问题,使用跳跃连接,加快网络训练速度同时保证图像细节的有效传递;在判别网络中使用步幅卷积代替池化层,减少模型的计算量;通过优化模型的训练,使得生成的深度图像更加清晰。实验结果表明,该算法能够生成效果更好的深度图,在主观视觉和客观评价方面均优于其他算法。