摘要

随着油气资源的不断勘探开发,相对易开采的油气矿逐渐建成,地震勘探的研究重点也向地下更深、构造更复杂的区域转移。目前,传统的地震速度建模方法在稳定性、准确性和计算效率方面都面临挑战。因此,本文利用将地震数据映射到速度模型的思路,提出了一种基于Attention-UNet网络的深度学习速度建模方法。采用的这种方法利用有限差分正演得到反射波形数据,将反射波形数据和对应的速度模型(标签)对作为Attention-UNet网络的输入,建立地震数据和速度模型之间的映射关系。网络训练后对新输入的地震数据进行速度模型的估计。数值实验结果表明,与传统的FWI相比,本文提出的方法也表现出良好的性能;基于Attention-UNet网络模型训练完成后,不需要经过大量的计算,就可以快速执行与训练集中速度结构相似的地下结构的速度建模,这比传统方法具有更高的计算效率。该方法在建立大量速度模型时具有很好的推广价值。