摘要
G-quadruplex(G4) is widely known as a non-classical secondary structure of nucleic acid. With the indepth study of G4, it is an urgent need for a phosphorescent probe with a high G4 binding ability to evaluate the level of G4 in the cytoplasm. Thus, this study designed and synthesized Ir-PDP where an Ir(Ⅲ)complex was used as a phosphorescent emitter. Meanwhile, two installed PDPs(pyridostatin derivatives)were used to improve the combination ability with G4 and reduced the cytotoxicity of the Ir(Ⅲ) complex.Compared with other nucleic acid secondary structures, Ir-PDP produced a higher phosphorescence lifetime after interacting with G4. Ir-PDP was distributed in the cytoplasm of living cells, and two-photon phosphorescence lifetime imaging can detect the binding events of the probe in the cytoplasm. The addition of G4 binder PDS significantly regulated cytoplasmic phosphorescence lifetime. The project explored a new sensing pathway to observe the binding manners of probes in the cytoplasm through the phosphorescence lifetime of probes.
- 单位