摘要

为有效应对金融时间序列数据的高噪声、时间依赖性和非线性,本文构建了一种CEEMD-CNN-LSTM模型。该模型基于互补集成经验模态分解(CEEMD),以及卷积神经网络(CNN)与长短期记忆网络(LSTM),将原始金融时间序列分解重构为高频项、低频项和趋势项,同时应用CNN-LSTM模型分别对各分项进行预测,并将各分项的预测值集成为最终预测结果。为验证CEEMD-CNN-LSTM模型对金融时间序列数据预测的准确性和有效性,选取沪深300、标准普尔500(S&P500)股票指数收盘点数进行了实证分析。实证结果表明,CEEMD-CNN-LSTM模型能同时提取序列依赖关系和局部特征,可有效避免数据直接输入模型导致预测结果右偏等问题,与其他主流预测模型相比,其预测精度更高,预测误差显著降低。