基于深度学习VGG网络模型的海洋单细胞藻类识别算法

作者:王羽徵; 程远; 毕海; 于秋玉; 刘丹*
来源:大连海洋大学学报, 2021, 36(02): 334-339.
DOI:10.16535/j.cnki.dlhyxb.2020-161

摘要

为更好地对海洋中单细胞藻类进行有效识别,本研究提出了基于改进式VGG16网络模型的单细胞藻类识别算法—AlgaeNet,在传统VGG网络模型基础上,通过减少卷积核数量,并添加BatchNormalization层进行神经网络模型加速。结果表明:在相同试验条件下,本研究中提出的AlgaeNet算法在训练过程中的损失值收敛速度及对测试集样本(卵形小球藻Chlorella ovalis与小等刺硅鞭藻Dictyocha fibula Ehrenberg)的预测准确率上升速度较传统VGG、AlexNet网络模型优势明显,识别准确率可达99.317%。研究表明,基于改进式VGG16网络模型的单细胞藻类识别算法AlgaeNet在单细胞藻类识别领域具有较好的分类识别性能,可实现海洋中藻类的准确识别。