在传统的BP神经网络预测模型的基础上引入改进的粒子群算法对神经网络中的权值和阈值进行不断优化,针对平房仓内部不同温度监测点处的粮食温度建立预测模型,改进后的粒子群算法拥有更好的局部寻优能力和全局寻优能力,较传统的BP神经网络预测拥有更精确的预测精度,更小的预测误差,使优化后的BP神经网络能快速的从历史粮温中总结平方仓粮温变化规律,实现平房仓粮温的预测。