摘要
随着人工智能迅速发展以及"智慧机场"的提出,研究人工智能在机场如何有效地辅助机场管制人员,驾驶员指挥航空器在地面滑行具有重要意义。本文提出一种基于强化学习的滑行路径规划方法,构建航空器机场地面强化学习移动模型,并以海口美兰机场为案例采用Python内置工具包Tkinter进行场面仿真;在此基础上,考虑机场航空器滑行规则,采用Off-Policy中Q-Learning算法求解贝尔曼方程,实现航空器在Modelbased环境中进行静态路径规划。结果表明:本文所提方法能够实现停机位到跑道出口智能静态路径规划。
- 单位