摘要

在对中分辨率遥感图像进行场景分类时,传统的特征提取方法无法提取全面的特征,若使用卷积神经网络进行场景分类,同一大小的卷积核无法提取尺寸大小各异的地物特征,导致分类精度降低.为了提取不同尺寸的地物特征,提高分类精度,本文提出一种基于多尺度特征融合的中分辨率遥感场景分类算法.对传统的卷积神经网络进行改进以适应中分辨率遥感数据集,并在其基础上添加多尺度池化,将连接多层次的特征图谱输入到全连接层进行分类.实验表明,多层特征融合方法提取的特征信息比单层多尺度池化方法提取的特征信息更全面,分类效果更优.与其他的传统分类方法相比,本文方法获得更好的分类结果.