摘要

氮素营养诊断关键在于氮营养指数(nitrogen nutrient index,NNI)预测。对于冬小麦氮营养指数预测模型而言,如何选取预处理方法和建模方法不一而足,不同预处理和模型选取对预测结果精度的影响程度目前还不清楚。该研究以ASD Field Spec3野外便携式高光谱仪采集乐陵市冬小麦冠层高光谱数据,采用10种光谱预处理方法并结合3种模型(偏最小二乘回归、BP神经网络和随机森林算法)建立多种冬小麦氮营养指数高光谱预测模型。对比模型预测精度表明最佳的高光谱建模方法为随机森林算法结合SG卷积平滑预处理所建模型(预测集R2=0.795,RMSE=0.125,RE=11.7%)精度高、可靠性强,是筛选出最佳的冬小麦氮营养指数高光谱预测模型。该研究结果对冬小麦氮营养指数高光谱预测建模具有科学价值,为筛选最优高光谱预处理方法和预测模型提供技术参考。