摘要

在临界Sobolev空间H1/2(R3)中,本文研究了三维不可压磁微极流体方程组的适定性.设(u0,ω0,b0)是H1/2(R3)中的小初值,则三维不可压磁微极流体方程组存在唯一整体强解(u,ω,b)∈C([0,+∞);H1/2(R3))∩L2((0,+∞);H3/2(R3))∩L4((0,+∞);H1(R3));设大初值(u0,ω0,b0)∈H1/2(R3),则存在一个正的时间T=T(u0,ω0,b0)使得三维不可压磁微极流体方程组在[0,T]内存在唯一局部强解(u,ω,b)∈C([0,T];H1/2(R3))∩L2((0,T];H3/2(R3))∩L4((0,T];H1(R3)),这些改进了Yuan J的结果(Existence theorem and blow-up criterion of the strong solutions to the magnetomicropolar fluid equations,Math.Methods Appl.Sci.,31(2008),1113-1130).