摘要

针对目前智能交通系统实时道路车辆检测中存在的检测效率不高等问题,设计了一种基于深度学习的道路车辆检测算法。首先在搭建好的平台下,通过卷积神经网络对采集的车辆图像数据集进行训练,得到训练后的模型;其次,对该模型内部的层结构进行可视化;最后,通过调节各网络参数及层结构对该模型进行优化。训练的模型通过实验测试,分别对图片和视频进行检测,图像识别准确率高,检测速度快,跟踪精度高,可应用于实时交通系统的检测。

全文