摘要
受限于人脸姿态、光照变化等因素,通过引入多通道Gaborface表征结合基于子空间的二维双向线性降维算法,提出了一种结合优化多通道Gaborface与二维线性降维的特征提取算法。首先,采用多通道Gaborface表征(MGFR)模型对样本集进行预处理,提取不同通道下的人脸Gabor特征表示并优化选取通道融合方式而组合成新特征;再引入样本间类别信息获得改进线性二维双向特征降维算法,从而对获得的人脸表示进行特征降维与提取;最终通过最近邻分类器得到分类结果。试验结果表明,通过在AR、ORL和YALE人脸库进行对比分析,改进算法对人脸姿态等变化具有较强的鲁棒性,且较其他算法表现出了较优的识别性能。
- 单位