摘要
同步定位与地图构建(SLAM)是视觉导航领域的关键技术之一,闭环检测是SLAM的基础问题。针对视觉SLAM闭环检测准确率不高的问题,提出一种高效准确的闭环检测算法。该算法由词袋模型、图像结构校验、跟踪预测模型3个模块构成。首先,将局部特征与全局特征相结合,设计了词袋模型与图像结构校验模块。词袋模型通过视觉单词比较图像之间的相似性,得到闭环候选帧。然后,图像结构校验模块灰度化、归一化当前图像与闭环候选图像。归一化之后的图像被直接作为局部特征的邻域,计算得到全局描述符,通过全局描述符判断闭环候选帧是否为有效的闭环。最后,针对传统闭环检测算法耗时随图像数量增加而显著增加的问题,设计了跟踪预测模块,以提高计算效率。实验中,与主流的DBoW算法相比,提出的闭环检测算法的准确率提升了20%以上,实时性也有更好的表现。
-
单位通信与信息工程学院; 上海大学