摘要

茶叶嫩芽精准识别是实现嫩芽智能化采摘的前提与基础,采用视觉和深度学习的嫩芽识别方法逐渐成熟,但该方法过度依赖于高性能硬件,不利于采茶机器人移动端的部署,针对这一问题,本文提出一种基于Compact-YOLO v4算法的茶叶嫩芽移动端识别方案。首先对YOLO v4算法的Backbone网络和Neck网络进行改进,将Backbone网络替换为GhostNet,将Neck网络中传统卷积替换为Ghost卷积,改进后的模型内存占用量仅为原来的1/5。接着运用迁移学习的训练方法提升模型精度,试验表明,Compact-YOLO v4算法模型的精度、召回率、平均精度均值、F1值分别为51.07%、78.67%、72.93%和61.45%。最后将本文算法模型移植到PRO-RK3568-B移动端开发板,通过转换模型、量化处理、改进部署环境3种方式,降低模型推理计算对硬件性能的需求程度,最终在保证嫩芽识别准确率的前提下,实现了优化模型推理过程、减轻移动端边缘计算压力的目的,为茶叶嫩芽采摘机器人的实际应用提供了理论和实践基础。