摘要
现有光伏组件缺陷识别方法存在提取特征困难、实时性较差导致了对光伏组件的缺陷故障检测的识别精度不高,本文提出一种基于改进YOLO v5算法的光伏组件红外热成像缺陷检测方法。改进后的YOLO v5算法主要是在原来的基础上增添注意机制SE模块,并且改进损失函数将GIo U改为EIo U提高模型收敛效果、最后采用KG模块平衡特征金字塔结构对模型进行优化,用以提高YOLOv5算法的识别精度和收敛效果。改进后的网络结构应用在YOLO v5s模型中,在光伏组件红外图像的检测上的平均检测精度m AP可以达到92.8%,比原本的YOLO v5s算法88.3%提升了4.5%,在精确度和召回率上的收敛效果也比原始YOLO v5算法模型有所提高,改进后的网络结构应用于l、m、x三种模型中,其检测精度都有所提升,因此改进后的YOLOv5算法适用于4种模型。
- 单位