摘要

实体关系抽取是从非结构化和程序化的海量文本中识别出实体之间的语义关系,为本体构建、智能检索等任务提供数据支持,然而现有远程监督关系抽取方法普遍存在需要大量人工标注语料库、提取特征含有噪声且忽略了实体与句子之间关联关系等问题。提出一种基于残差双向长短时记忆网络(BiLSTM)与句袋内和句袋间注意力机制的关系抽取模型,在将词向量和位置向量作为模型输入的基础上,通过残差BiLSTM网络提取语句与实体词中的长距离文本信息,利用句袋内和句袋间注意力机制对提取到的特征信息进行处理,使模型在远程监督过程中减少实体之间的特征提取噪声,并提高模型识别准确性。在NYT数据集上的实验结果表明,该模型能够充分利用实体与关系特征,平均精确率达到86.2%,相比于将卷积神经网络和分段卷积神经网络作为句子编码器的同类模型具有更好的远程监督关系抽取性能。

全文