摘要

为了在无线网络中进行高效的链路资源调度、减小网络干扰、提高网络容量,提出了一种利用回溯天线并考虑干扰环境的链路资源分布式智能调度算法.首先,结合通信的路径损耗模型设计卷积核,对节点密度矩阵进行卷积来衡量干扰链路强度,从而避免对所有干扰链路进行信道估计产生巨大的计算代价;然后,结合强化学习的思想设计了与通信环境交互的链路调度学习模型,每个链路利用神经网络进行独立的训练,将训练所得的决策结果反馈到环境中进行状态更新,模型在不断更新的环境中迭代来学习最优的调度策略.该方法能分布式的运行,可有效衡量无线网络中的链路干扰强度,结合衡量结果进行高效的链路资源分布式调度,从而最大化网络容量.仿真结果验证了该调度算法无论是在算法迭代收敛还是网络容量性能上都能很好地逼近全局的调度算法,达到全局算法最优结果的92%~100%.

全文