摘要
关系抽取是构建知识图谱的一项核心技术.由于中文具有复杂的语法和句式,同时现有的神经网络模型提取特征有限以及语义表征能力较差,从而影响中文实体关系抽取的性能.文章提出了一种融合多特征的BERT预训练模型的实体关系抽取算法.首先对语料进行预处理,提取关键词、实体对信息和实体类型特征并进行融合,以此来强化BERT模型的语义学习能力,极大限度地减少了语义信息特征的丢失,最后通过Softmax分类器进行关系分类.实验结果表明,文章模型优于现有的神经网络模型.在人工标注的中文数据集上本文模型取得了97.50%的F1值.
- 单位