基于城市居民出行的随机性和出租车行驶的机动性,对出租车轨迹数据进行载客热点区域的挖掘,得到城市居民出行规律。由于出租车轨迹数据密度分布不均匀,应用一般的聚类方法效果不佳,因此提出一种基于密度分区的聚类算法。该算法通过求取每个出租车上车点位置数据的局部密度,得到密度峰值点作为簇中心,实现对轨迹数据集基于密度的快速划分,得到不同密度的轨迹数据集,在此基础上进行二次聚类。实验结果表明,该算法可以有效识别不同密度的出租车载客热点区域,提高聚类结果的精确度。