摘要
为了实现对不同稻飞虱的快速准确识别,同时防止同一姿态下的同一只昆虫被重复计数,提出一种将图像消冗与CenterNet网络相结合的识别分类方法。首先利用自主设计的田间昆虫采集装置,自动获取昆虫图像并制作数据集。其次,将CenterNet算法与图像消冗算法相结合,选用深层特征融合网络(Deep layer aggregation, DLA)作为主干网络来提取昆虫的特征,并进行识别分类。将本文方法与经典机器学习和深度学习模型进行对比,实验结果表明,对于田间昆虫采集装置获取到的相似度较高的活体图像,本文方法不仅能够快速处理昆虫图像,而且能够成功解决昆虫重复检测的问题,平均精度均值为88.1%,检测速率为42.9 f/s,无论是精度还是处理速度本文方法都具有较明显优势。该研究有效地完成了对3种主要稻飞虱的识别分类,对不同时间段采集到的昆虫表现出良好的泛化能力,可用于后期水稻害虫暴发的智能预警和测报。
- 单位