摘要
针对风电机组齿轮箱故障特征提取不足,故障诊断率低问题,提出了一种基于RF特征优选,结合WOA-ELM特征识别的风电齿轮箱故障诊断方法。首先,提取风电齿轮箱时域、频域、时频域特征,构建多域高维特征集;其次,利用RF进行特征重要度排序并提取10维优选特征;最后,利用WOA优化调整ELM模型的输入权值和隐含层阈值,实现风电齿轮箱故障分类识别。将本文方法应用于风电齿轮箱故障诊断,实验结果表明,本文方法平均诊断率能达到99.81%,诊断准确率均高于对比方法且诊断用时最少,能够有效地进行风电齿轮箱故障诊断。
- 单位