基于FPGA的通用卷积神经网络识别系统研究

作者:赵凡; 白雪; 杨涛; 赵不贿; 徐雷钧
来源:自动化仪表, 2022, 43(01): 42-47+54.
DOI:10.16086/j.cnki.issn1000-0380.2020110065

摘要

针对目前在中央处理器(CPU)中部署卷积神经网络速度慢、在图形处理器(GPU)中功耗高等问题,采用基于现场可编程门阵列(FPGA)平台开发的卷积神经网络识别系统,对卷积神经网络的各个环节进行算法加速。考虑到算法的计算量和逻辑资源的消耗主要集中在卷积层,提出了在特征图的通道方向进行双卷积并行模块设计。在卷积神经网络的池化层和激活函数Softmax中,设计了流式池化,并提出改进的分段查表计算Softmax函数的方法。另外,在归一化和预处理阶段也分别进行了优化。卷积神经网络识别系统选用XILINX公司的ZCU104开发平台。该平台内部包含片上系统与可编程逻辑控制器。通过自制水果数据集,分别在ZCU104、CPU和GPU上进行试验。试验结果显示,ZCU104分类的准确率达到了95.8%,识别速度约为计算机端上CPU实现同种网络模型的3倍,并且高于GPU。此外,该系统通用性高、资源占用率低,可应用在其他神经网络模型中。

全文