摘要
在人工神经网络中,BP(Back Propagation)神经网络占有重要席位,它具有很多优点,但也有很多缺陷。而遗传算法(GA)是使用运算对个体进行"优胜劣汰"的一种算法,用GA优化BP网络,取长补短。论文建立了BP网络模型,研究了对BP网络的优化,根据GA的特点,在MATLAB环境下,选取合适的网络结构对BP网络非线性函数进行仿真模拟和预测。从训练的结果可以看出,BP网络经GA优化后显然比未优化前的拟合效果更好。同时论文实现了粒子群(PSO)算法优化BP网络,并与GA作对比,从实验结果分析比较得知,BP网络经两种算法优化后拟合效果都明显变好,且GA比PSO算法优化的结果更准确。
-
单位山西大同大学