摘要

相对辐射校正是遥感变化检测中重要的预处理过程,伪不变地物(Pseudo-Invariant Features,PIF)是多时相影像中相对不变的地物,是相对辐射校正中的重要依据。针对高分遥感图像变化检测中相对辐射校正的要求,本文提出了一个自动提取和优化选择PIF的流程和方法:首先计算两期图像的亮度、光谱特征和空间特征的变化向量,然后对各变化向量的像元值从低到高进行排序,经多数投票后提取PIF,最后使用"迭代线性回归—去除异常值"方法选择获得最终PIF。以2016年11月27日和2017年7月18日的2期"北京二号"高空间分辨率多光谱影像为例,选择地物占比不同的两个实验区对流程和方法进行了验证,并与多元变化检测和迭代加权多元变化检测的PIF提取方法进行了比较。使用两期WorldView-2影像和Landsat-8 OLI影像对方法的适用性进行了验证。结果表明:(1) 2个实验区提取的PIF精度分别为98.74%和98.71%,PIF像元合理分布于未变化区域、包括了影像中主要的地物类型;(2)使用本文方法提取的PIF建立的相对辐射校正模型具有显著的线性拟合效果(p<0.000 1);(3)本文方法考虑了图像亮度、光谱信息以及空间信息的差异,使用参数少,可操作性高;(4)与多元变化检测和迭代加权多元变化检测方法相比,本文方法提取的PIF更为合理,建立的辐射校正方程拟合效果更佳;(5)本文方法适用于具有相同波段设置的中、高空间分辨率光学遥感影像。

  • 单位
    虚拟地理环境教育部重点实验室; 南京师范大学; 江苏省地理信息资源开发与利用协同创新中心