摘要

针对传统的单幅图像去雾算法容易受到雾图先验知识制约导致颜色失真等问题,本文提出了一种基于HSI颜色空间的深度学习多尺度卷积神经网络单幅图像去雾方法,即通过设计深度学习网络结构来直接学习雾天图像与其无雾清晰图像色调、饱和度和亮度之间的映射关系,从而实现图像去雾。该方法首先将有雾图像从RGB颜色空间转换到HSI颜色空间,然后设计了一个端到端的多尺度全卷积神经网络模型,通过色调H、饱和度I、强度S三个不同的去雾子网分别进行多尺度提取,深度学习得到有雾图像与清晰图像之间的映射关系,从而恢复出无雾图像。实验结果表明,本文方法对于雾天图像具有良好的去雾效果,在主观评价和客观评价上均优于其它对比算法。