摘要

目前磨矿系统故障诊断多为人为判断,效率低、准确率低、成本高且容易造成人员伤亡.传统方法对高维度和时间相关性较大的样本数据集分类能力较差,针对以上问题,提出一种基于RNN-LSTM(Recurrent Neural Network-Long Short-Term Memory)的深度学习方法,实现磨矿系统故障的智能化诊断.该方法通过将数据集"分批处理"分别输入到LSTM单元网络中,提取数据集在时间维度上的相关性,并比较分析前后时刻的输入特征向量实现对故障分类.通过分别对RNN-LSTM深度学习网络与基于自编码分类方法进行实验对比验证,得出结论:在时间相关性较强的高维度数据集中基于RNN-LSTM深度方法辨识效果明显优于基于自编码方法的分类器,最终网络对于故障诊断的错误率低至3%.

全文