摘要

本文采用综合预测的方法,对数据进行相似日处理,大大降低了不同天气类型对光伏功率预测的影响,通过ARMA时间序列结合LM神经网络,弥补了LM神经网络在线性部分(趋势、季节变动、循环波动)的不足,大大提高了预测的精确度和稳定性。分别对晴天、阴天和雨天三种天气类型下的光伏功率进行预测,并将其与灰色预测、LM神经网络模型进行对比。结果表明,结合相似日的时间序列神经网络光伏发电功率预测模型,在光伏发电功率预测领域具有更高的精度与稳定性。