邻近区域施工,致使地铁沉降呈现复杂的非线性变化。对此,采用奇异谱分析(SSA)和BP神经网络对地铁结构进行分析与预测。通过SSA重建趋势序列和周期序列,分析地铁结构变化的趋势与周期波动;利用BP神经网络对重建趋势序列与时间序列分别进行预测。以上海9号线地铁沉降监测数据为例,提取趋势序列与周期序列进行分析及预测,实验证明了利用SSA对地铁监测序列进行分析以及利用BP神经网络对成分序列进行预测的可行性。