摘要
面部表情识别广泛应用于各种研究领域,针对面部表情识别使用深度神经网络方法结构复杂、可解释性差和传统机器学习方法特征提取缺乏多样性、识别率低的问题.提出了一种新的深度卷积级联森林(Deep Convolution Cascade Forest,DCCF)方法用于人脸面部表情识别,该方法通过卷积神经网络深度学习人脸面部显著特征,并采用基于随机森林的级联结构森林逐层学习识别出不同的面部表情特征,提高了人脸表情的识别准确率.DCCF在JAFFE、CK+和Fer2013 3个公开面部表情数据集进行了实验,并对面部表情提取的5种特征和7种分类方法进行了比较分析,结果显示DCCF在对比的算法中人脸表情识别性能最好,3个数据集的准确率分别达到91.4%,98.7%,71.6%.
- 单位